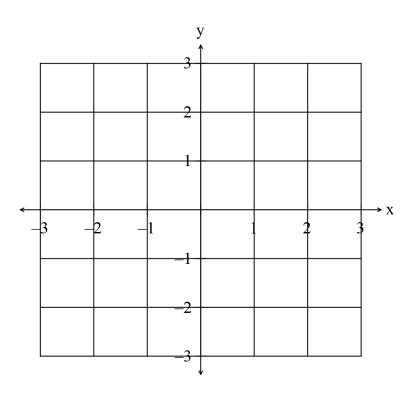
ALL SAINTS' COLLEGE

Year 12 Mathematics Specialist 2018

Test Number 1: Complex Numbers

Resource Free

Name:		Teacher: DDA
Marks:	45	
Time Allowed:	45 minu	tes
		permitted any notes or calculator. Show your working where must show working for questions worth more than 2 marks.
Question 1		[4 marks]
Solve the complex	z equation z^4	=-16.


Question 2 [3 marks]

Given $P(x) = x^3 + x^2 + x - 3$ find x such that P(x) = 0 and hence solve the equation $x^3 + x^2 + x - 3 = 0$.

Question 3

[5,3 = 8 marks]

(a) Sketch $\{z: |x-1+iy|=2|x+i(y-1)|\}$ on the set of axes below.

(b) If $z = \frac{1+i}{1-i} \times (3+3i)$ find the expression for $z = \frac{1+i}{1-i} \times (3+3i)$

(a) Use De Moivre's theorem to express cos(3x) in terms of cos(x).

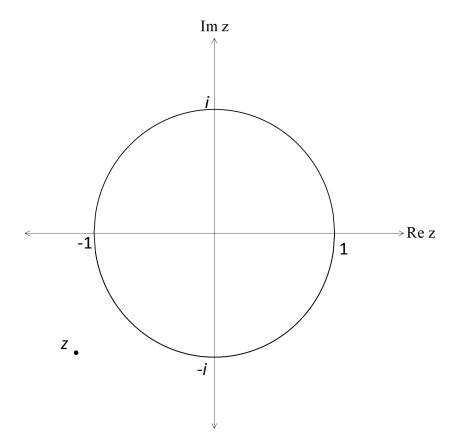
(b) Calculate $(-1-i)^{10}$. Give your answer in cartesian form.

Question 5 [4 marks]

Determine the complex number z=a+bi, where a,b are real constants with a>0 such that $Im\left(\frac{1}{z^2}\right)=\frac{1}{100}$ and Im(z)=-2Re(z).

Question 6 [3 marks]

Simplify the expression below.

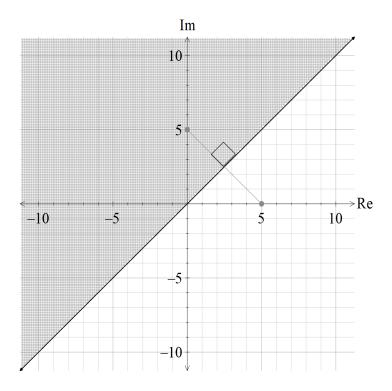

$$\left(\frac{\sqrt{3}cis\frac{3\pi}{4}}{6cis\frac{5\pi}{6}cis\frac{2\pi}{3}}\right)^{-1}$$

a) Given z is a complex number with modulus r and argument θ , express the modulus and argument of each of the complex numbers z_1 and z_2 in terms of r and θ where

i)
$$z_1 = \bar{z}$$
.

ii)
$$z_2 = -z^{-1}$$
.

b) The diagram below shows the circle in the complex plane and the position of the complex number z.


Given the approximate values of r and θ are 1.5 and 220° respectively, indicate the locations of he complex numbers z_1 and z_2 as defined in part (a) on the diagram above.

Question 8 [3 marks]

If w is any complex cube root of unity, simplify $(1 + 4w)(1 + 4w^2)$.

Question 9 [3 marks]

Describe the locus of z in the following Argand Diagram.

